Logo

Tratamiento no farmacológico

Actualización 2021 de la Guía Española de la EPOC (GesEPOC).

BIBLIOGRAFÍA

1. M. Miravitlles et al., “Spanish COPD Guidelines (GesEPOC) 2021: Updated Pharmacological treatment of stable COPD,” Arch. Bronconeumol., 2021, doi: 10.1016/j.arbres.2021.03.005.

2. M. A. P. Vermeeren et al., “Prevalence of nutritional depletion in a large out-patient population of patients with COPD,” Respir. Med., vol. 100, no. 8, pp. 1349–1355, Aug. 2006, doi: 10.1016/j.rmed.2005.11.023.

3. C. Casanova et al., “The progression of chronic obstructive pulmonary disease is heterogeneous: The experience of the BODE cohort,” Am. J. Respir. Crit. Care Med., vol. 184, no. 9, pp. 1015–1021, Nov. 2011, doi: 10.1164/rccm.201105-0831OC.

4. J. Vestbo et al., “Body Mass, Fat-Free Body Mass, and Prognosis in Patients with Chronic Obstructive Pulmonary Disease from a Random Population Sample,” Am. J. Respir. Crit. Care Med., vol. 173, no. 1, pp. 79–83, Jan. 2006, doi: 10.1164/rccm.200506-969oc.

5. E. Keogh and E. Mark Williams, “Managing malnutrition in COPD: A review,” Respiratory Medicine, vol. 176. W.B. Saunders Ltd, 01-Jan-2021, doi: 10.1016/j.rmed.2020.106248.

6. P. F. Collins, M. Elia, and R. J. Stratton, “Nutritional support and functional capacity in chronic obstructive pulmonary disease: A systematic review and meta-analysis,” Respirology, vol. 18, no. 4. Respirology, pp. 616–629, 2013, doi: 10.1111/resp.12070.

7. A. M. Schols et al., “Nutritional assessment and therapy in COPD: A European respiratory society statement,” Eur. Respir. J., vol. 44, no. 6, pp. 1504–1520, Dec. 2014, doi: 10.1183/09031936.00070914.

8. M. van Beers et al., “Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial,” Clin. Nutr., vol. 39, no. 2, pp. 405–413, Feb. 2020, doi: 10.1016/j.clnu.2019.03.001.

9. F. M. E. Franssen, D. E. O’Donnell, G. H. Goossens, E. E. Blaak, and A. M. W. J. Schols, “Obesity and the lung: 5 · Obesity and COPD,” Thorax, vol. 63, no. 12, pp. 1110–1117, 2008, doi: 10.1136/thx.2007.086827.

10. M. Divo et al., “Comorbidity Distribution, Clinical Expression and Survival in COPD Patients with Different Body Mass Index,” Chronic Obstr. Pulm. Dis. J. COPD Found., vol. 1, no. 2, pp. 229–238, 2014, doi: 10.15326/jcopdf.1.2.2014.0117.

11. D. A. Jolliffe et al., “Vitamin D to prevent exacerbations of COPD: Systematic review and meta-analysis of individual participant data from randomised controlled trials,” Thorax, vol. 74, no. 4, pp. 337–345, Apr. 2019, doi: 10.1136/thoraxjnl-2018-212092.

12. E. Gimeno-Santos et al., “Determinants and outcomes of physical activity in patients with COPD: A systematic review,” Thorax, vol. 69, no. 8. BMJ Publishing Group, pp. 731–739, 2014, doi: 10.1136/thoraxjnl-2013-204763.

13. K. C. Furlanetto et al., “Sedentary behavior is an independent predictor of mortality in subjects with COPD,” Respir. Care, vol. 62, no. 5, pp. 579–587, May 2017, doi: 10.4187/respcare.05306.

14. Z. McKeough, S. W. M. Cheng, J. Alison, C. Jenkins, M. Hamer, and E. Stamatakis, “Low leisure-based sitting time and being physically active were associated with reduced odds of death and diabetes in people with chronic obstructive pulmonary disease: a cohort study,” J. Physiother., vol. 64, no. 2, pp. 114–120, Apr. 2018, doi: 10.1016/j.jphys.2018.02.007.

15. M. A. Spruit et al., “An official American thoracic society/European respiratory society statement: Key concepts and advances in pulmonary rehabilitation,” Am. J. Respir. Crit. Care Med., vol. 188, no. 8, Oct. 2013, doi: 10.1164/rccm.201309-1634ST.

16. E. Koolen et al., “‘Can do’ versus ‘do do’: A Novel Concept to Better Understand Physical Functioning in Patients with Chronic Obstructive Pulmonary Disease,” J. Clin. Med., vol. 8, no. 3, p. 340, Mar. 2019, doi: 10.3390/jcm8030340.

17. M. A. Spruit, F. Pitta, E. McAuley, R. L. ZuWallack, and L. Nici, “Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 192, no. 8. American Thoracic Society, pp. 924–933, 15-Oct-2015, doi: 10.1164/rccm.201505-0929CI.

18. A. Blondeel, H. Demeyer, W. Janssens, and T. Troosters, “The role of physical activity in the context of pulmonary rehabilitation,” COPD: Journal of Chronic Obstructive Pulmonary Disease, vol. 15, no. 6. Taylor and Francis Ltd, pp. 632–639, 02-Nov-2018, doi: 10.1080/15412555.2018.1563060.

19. J. Garcia-Aymerich et al., “Validity and responsiveness of the Daily-and Clinical visit-PROactive Physical Activity in COPD (D-PPAC and C-PPAC) instruments,” Thorax, vol. 76, no. 3, pp. 228–238, Mar. 2021, doi: 10.1136/thoraxjnl-2020-214554.

20. M. Armstrong, A. Winnard, N. Chynkiamis, S. Boyle, C. Burtin, and I. Vogiatzis, “Use of pedometers as a tool to promote daily physical activity levels in patients with COPD: A systematic review and meta-analysis,” European Respiratory Review, vol. 28, no. 154. European Respiratory Society, 31-Dec-2019, doi: 10.1183/16000617.0039-2019.

21. A. Arbillaga-Etxarri et al., “Long-term efficacy and effectiveness of a behavioural and community-based exercise intervention (Urban Training) to increase physical activity in patients with COPD: A randomised controlled trial,” Eur. Respir. J., vol. 52, no. 4, 2018, doi: 10.1183/13993003.00063-2018.

22. H. Demeyer et al., “Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: A multicentre randomised controlled trial,” Thorax, vol. 72, no. 5, pp. 415–423, Jan. 2017, doi: 10.1136/thoraxjnl-2016-209026.

23. D. Kohlbrenner, N. A. Sievi, O. Senn, M. Kohler, and C. F. Clarenbach, “Long-term effects of pedometer-based physical activity coaching in severe copd: A randomized controlled trial,” Int. J. COPD, vol. 15, pp. 2837–2846, 2020, doi: 10.2147/COPD.S279293.

24. A. T. Burge, N. S. Cox, M. J. Abramson, and A. E. Holland, “Interventions for promoting physical activity in people with chronic obstructive pulmonary disease (COPD),” Cochrane Database Syst. Rev., vol. 2020, no. 4, Apr. 2020, doi: 10.1002/14651858.CD012626.pub2.

25. L. Nici and R. ZuWallack, “An official American thoracic society workshop report: The integrated care of the COPD patient,” in Proceedings of the American Thoracic Society, 2012, vol. 9, no. 1, pp. 9–18, doi: 10.1513/pats.201201-014ST.

26. C. L. Rochester et al., “An official American Thoracic Society/European Respiratory Society policy statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation,” Am. J. Respir. Crit. Care Med., vol. 192, no. 11, pp. 1373–1386, Dec. 2015, doi: 10.1164/rccm.201510-1966ST.

27. B. Mccarthy, D. Casey, D. Devane, K. Murphy, E. Murphy, and Y. Lacasse, “Pulmonary rehabilitation for chronic obstructive pulmonary disease,” Cochrane Database of Systematic Reviews, vol. 2015, no. 2. John Wiley and Sons Ltd, 24-Feb-2015, doi: 10.1002/14651858.CD003793.pub3.

28. M. Rugbjerg, U. W. Iepsen, K. J. Jørgensen, and P. Lange, “Effectiveness of pulmonary rehabilitation in COPD with mild symptoms: A systematic review with meta-analyses,” International Journal of COPD, vol. 10. Dove Medical Press Ltd., pp. 791–801, 17-Apr-2015, doi: 10.2147/COPD.S78607.

29. R. Sohanpal, L. Steed, T. Mars, and S. J. C. Taylor, “Understanding patient participation behaviour in studies of COPD support programmes such as pulmonary rehabilitation and self-management: A qualitative synthesis with application of theory,” npj Prim. Care Respir. Med., vol. 25, Sep. 2015, doi: 10.1038/npjpcrm.2015.54.

30. S. Singh, “One step at a time lifestyle physical activity interventions,” Annals of the American Thoracic Society, vol. 13, no. 5. American Thoracic Society, pp. 586–587, 01-May-2016, doi: 10.1513/AnnalsATS.201601-039ED.

31. P. K. Lindenauer et al., “Association between Initiation of Pulmonary Rehabilitation after Hospitalization for COPD and 1-Year Survival among Medicare Beneficiaries,” JAMA - J. Am. Med. Assoc., vol. 323, no. 18, pp. 1813–1823, May 2020, doi: 10.1001/jama.2020.4437.

32. A. Machado, P. Matos Silva, V. Afreixo, C. Caneiras, C. Burtin, and A. Marques, “Design of pulmonary rehabilitation programmes during acute exacerbations of COPD: A systematic review and network meta-analysis,” European Respiratory Review, vol. 29, no. 158. European Respiratory Society, pp. 1–13, 31-Dec-2020, doi: 10.1183/16000617.0039-2020.

33. A. E. Holland et al., “Home-based rehabilitation for COPD using minimal resources: A randomised, controlled equivalence trial,” Thorax, vol. 72, no. 1, pp. 57–65, Jan. 2017, doi: 10.1136/thoraxjnl-2016-208514.

34. K. E. Mitchell et al., “A self-management programme for COPD: A randomised controlled trial,” Eur. Respir. J., vol. 44, no. 6, pp. 1538–1547, Dec. 2014, doi: 10.1183/09031936.00047814.

35. T. J. Ringbaek, M. Lavesen, and P. Lange, “Tablet computers to support outpatient pulmonary rehabilitation in patients with COPD,” Eur. Clin. Respir. J., vol. 3, no. 1, p. 31016, Jan. 2016, doi: 10.3402/ecrj.v3.31016.

36. H. Hansen et al., “Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD: A randomised multicentre trial,” Thorax, vol. 75, no. 5, pp. 413–421, May 2020, doi: 10.1136/thoraxjnl-2019-214246.

37. J. B. Galdiz et al., “Telerehabilitation Programme as a Maintenance Strategy for COPD Patients: A 12-Month Randomized Clinical Trial,” Arch. Bronconeumol., vol. 57, no. 3, pp. 195–204, Mar. 2021, doi: 10.1016/j.arbres.2020.03.034.

38. E. F. M. Wouters, B. B. R. E. F. Wouters, I. M. L. Augustin, S. Houben-Wilke, L. E. G. W. Vanfleteren, and F. M. E. Franssen, “Personalised pulmonary rehabilitation in COPD,” European Respiratory Review, vol. 27, no. 147. European Respiratory Society, 2018, doi: 10.1183/16000617.0125-2017.

39. S. S. Jacobs et al., “Home oxygen therapy for adults with chronic lung disease an official american thoracic society clinical practice guideline,” Am. J. Respir. Crit. Care Med., vol. 202, no. 10, pp. E121–E141, Nov. 2020, doi: 10.1164/rccm.202009-3608ST.

40. F. Ortega Ruiz et al., “Oxigenoterapia continua domiciliaria,” Arch. Bronconeumol., vol. 50, no. 5, pp. 185–200, May 2014, doi: 10.1016/j.arbres.2013.11.025.

41. “A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation,” N. Engl. J. Med., vol. 375, no. 17, pp. 1617–1627, Oct. 2016, doi: 10.1056/nejmoa1604344.

42. M. Ekström, Z. Ahmadi, A. Bornefalk-Hermansson, A. Abernethy, and D. Currow, “Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy,” Cochrane Database of Systematic Reviews, vol. 2016, no. 11. John Wiley and Sons Ltd, 25-Nov-2016, doi: 10.1002/14651858.CD006429.pub3.

43. I. Jarosch et al., “Short-term Effects of Supplemental Oxygen on 6-Min Walk Test Outcomes in Patients With COPD: A Randomized, Placebo-Controlled, Single-blind, Crossover Trial,” Chest, vol. 151, no. 4, pp. 795–803, Apr. 2017, doi: 10.1016/j.chest.2016.11.044.

44. J. A. Alison et al., “Oxygen compared to air during exercise training in COPD with exercise-induced desaturation,” Eur. Respir. J., vol. 53, no. 5, May 2019, doi: 10.1183/13993003.02429-2018.

45. E. D. Hasler et al., “Effect of Breathing Oxygen-Enriched Air on Exercise Performance in Patients with Chronic Obstructive Pulmonary Disease: Randomized, Placebo-Controlled, Cross-Over Trial,” Respiration, vol. 99, no. 3, pp. 213–224, Mar. 2020, doi: 10.1159/000505819.

46. F. Ameer, K. V. Carson, Z. A. Usmani, and B. J. Smith, “Ambulatory oxygen for people with chronic obstructive pulmonary disease who are not hypoxaemic at rest,” Cochrane Database of Systematic Reviews, vol. 2014, no. 6. John Wiley and Sons Ltd, 24-Jun-2014, doi: 10.1002/14651858.CD000238.pub2.

47. Y. Lacasse et al., “Randomized Trial of Nocturnal Oxygen in Chronic Obstructive Pulmonary Disease,” N. Engl. J. Med., vol. 383, no. 12, pp. 1129–1138, Sep. 2020, doi: 10.1056/nejmoa2013219.

48. W. Windisch, S. Kostić, M. Dreher, J. C. Virchow, and S. Sorichter, “Outcome of patients with stable COPD receiving controlled noninvasive positive pressure ventilation aimed at a maximal reduction of Paco2,” Chest, vol. 128, no. 2, pp. 657–662, 2005, doi: 10.1378/chest.128.2.657.

49. B. Ergan et al., “European Respiratory Society guidelines on long-term home non-invasive ventilation for management of COPD,” Eur. Respir. J., vol. 54, no. 3, Sep. 2019, doi: 10.1183/13993003.01003-2019.

50. M. Macrea et al., “Long-Term Noninvasive Ventilation in Chronic Stable Hypercapnic Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline,” Am. J. Respir. Crit. Care Med., vol. 202, no. 4, pp. E74–E87, Aug. 2020, doi: 10.1164/RCCM.202006-2382ST.

51. C. J. Egea-Santaolalla, E. Chiner Vives, S. Díaz Lobato, N. G. Mangado, M. Lujan Tomé, and O. Mediano San Andrés, “Ventilación mecánica a domicilio,” Open Respir. Arch., vol. 2, no. 2, pp. 67–88, Apr. 2020, doi: 10.1016/j.opresp.2020.02.007.

52. M. Zantah, A. Pandya, M. R. Jacobs, and G. J. Criner, “The Mechanisms of Benefit of High-Flow Nasal Therapy in Stable COPD,” J. Clin. Med., vol. 9, no. 12, p. 3832, Nov. 2020, doi: 10.3390/jcm9123832.

53. T. Bonnevie et al., “Nasal High Flow for Stable Patients with Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis,” COPD J. Chronic Obstr. Pulm. Dis., vol. 16, no. 5–6, pp. 368–377, Nov. 2019, doi: 10.1080/15412555.2019.1672637.

54. N. Marchetti and G. J. Criner, “Surgical Approaches to Treating Emphysema: Lung Volume Reduction Surgery, Bullectomy, and Lung Transplantation,” Semin. Respir. Crit. Care Med., vol. 36, no. 4, pp. 592–608, Aug. 2015, doi: 10.1055/s-0035-1556064.

55. S. Duffy, N. Marchetti, and G. J. Criner, “Surgical Therapies for Chronic Obstructive Pulmonary Disease,” Clinics in Chest Medicine, vol. 41, no. 3. W.B. Saunders, pp. 559–566, 01-Sep-2020, doi: 10.1016/j.ccm.2020.06.011.

56. D. Weill et al., “A consensus document for the selection of lung transplant candidates: 2014 - An update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation,” Journal of Heart and Lung Transplantation, vol. 34, no. 1. Elsevier USA, pp. 1–15, 01-Jan-2015, doi: 10.1016/j.healun.2014.06.014.

57. A. Román et al., “Normativa para la selección de pacientes candidatos a trasplante pulmonar,” Arch. Bronconeumol., vol. 47, no. 6, pp. 303–309, Jun. 2011, doi: 10.1016/j.arbres.2011.03.007.

58. D. C. Chambers et al., “The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Lung And Heart-Lung Transplantation Report—2017; Focus Theme: Allograft ischemic time,” J. Hear. Lung Transplant., vol. 36, no. 10, pp. 1047–1059, Oct. 2017, doi: 10.1016/j.healun.2017.07.016.

59. G. Thabut et al., “Survival after bilateral versus single lung transplantation for patients with chronic obstructive pulmonary disease: a retrospective analysis of registry data,” Lancet, vol. 371, no. 9614, pp. 744–751, 2008, doi: 10.1016/S0140-6736(08)60344-X.

60. R. D. Yusen et al., “Lung transplantation in the United States, 1999-2008: Special feature,” American Journal of Transplantation, vol. 10, no. 4 PART 2. Am J Transplant, pp. 1047–1068, Apr-2010, doi: 10.1111/j.1600-6143.2010.03055.x.

61. F. A et al., “A Randomized Trial Comparing Lung-Volume–Reduction Surgery with Medical Therapy for Severe Emphysema,” N. Engl. J. Med., vol. 348, no. 21, pp. 2059–2073, May 2003, doi: 10.1056/nejmoa030287.

62. F. A et al., “Patients at High Risk of Death after Lung-Volume–Reduction Surgery,” N. Engl. J. Med., vol. 345, no. 15, pp. 1075–1083, Oct. 2001, doi: 10.1056/nejmoa11798.

63. N. Marchetti, S. Duffy, and G. J. Criner, “Interventional Bronchoscopic Therapies for Chronic Obstructive Pulmonary Disease,” Clinics in Chest Medicine, vol. 41, no. 3. W.B. Saunders, pp. 547–557, 01-Sep-2020, doi: 10.1016/j.ccm.2020.06.010.

64. F. C. Sciurba et al., “Effect of endobronchial coils vs usual care on exercise tolerance in patients with severe emphysema: The renew randomized clinical trial,” JAMA - J. Am. Med. Assoc., vol. 315, no. 20, pp. 2178–2189, May 2016, doi: 10.1001/jama.2016.6261.

65. K. K,  ten H. NH, H. JE, K. HA,  van R. EM, and S. DJ, “Endobronchial Valves for Emphysema without Interlobar Collateral Ventilation,” N. Engl. J. Med., vol. 373, no. 24, 2015, doi: 10.1056/NEJMOA1507807.

66. S. V. Kemp et al., “A multicenter randomized controlled trial of zephyr endobronchial valve treatment in heterogeneous emphysema (Transform),” Am. J. Respir. Crit. Care Med., vol. 196, no. 12, pp. 1535–1543, Dec. 2017, doi: 10.1164/rccm.201707-1327OC.

67. D. J. Slebos and T. Wiese, “A multicenter randomized controlled trial of zephyr endobronchial valve treatment in heterogeneous emphysema (LIBERATE),” Am. J. Respir. Crit. Care Med., vol. 198, no. 9, pp. 1151–1164, Nov. 2018, doi: 10.1164/rccm.201803-0590OC.

68. G. Deslée et al., “Lung volume reduction coil treatment vs usual care in patients with severe emphysema the REVOLENS randomized clinical trial,” JAMA - Journal of the American Medical Association, vol. 315, no. 2. American Medical Association, pp. 175–184, 12-Jan-2016, doi: 10.1001/jama.2015.17821.

69. F. J. F. Herth et al., “Segmental volume reduction using thermal vapour ablation in patients with severe emphysema: 6-month results of the multicentre, parallel-group, open-label, randomised controlled STEP-UP trial,” Lancet Respir. Med., vol. 4, no. 3, pp. 185–193, Mar. 2016, doi: 10.1016/S2213-2600(16)00045-X.

70. P. L. Shah et al., “Thermal vapour ablation to reduce segmental volume in patients with severe emphysema: STEP-UP 12 month results,” The Lancet Respiratory Medicine, vol. 4, no. 9. Lancet Publishing Group, pp. e44–e45, 01-Sep-2016, doi: 10.1016/S2213-2600(16)30199-0.

Logo